منابع مشابه
On the Galois Theory of Division Rings
1. Throughout this paper, K will represent a division ring and L a galois division subring. We are interested in establishing a galois theory for the extension K/L when K/L is locally finite. In order to do this one must identify the galois subrings of K containing L. An example given by Jacobson [4] shows that not every such division subring is galois. However, we obtain that each subring subj...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملGalois Theory and Integral Models of Λ-rings
We show that any Λ-ring, in the sense of Riemann–Roch theory, which is finite étale over the rational numbers and has an integral model as a Λ-ring is contained in a product of cyclotomic fields. In fact, we show that the category of them is described in a Galois-theoretic way in terms of the monoid of pro-finite integers under multiplication and the cyclotomic character. We also study the maxi...
متن کاملGeneralized affine transformation monoids on Galois rings
Let A be a ring with identity. The generalized affine transformation monoid Gaff(A) is defined as the set of all transformations on A of the form x → xu + a (for all x ∈ A), where u,a∈ A. We study the algebraic structure of the monoid Gaff(A) on a finite Galois ring A. The following results are obtained: an explicit description of Green’s relations on Gaff(A); and an explicit description of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1956
ISSN: 0386-2194
DOI: 10.3792/pja/1195525432